The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum.

نویسندگان

  • P Rossi
  • G De Filippi
  • S Armano
  • V Taglietti
  • E D'Angelo
چکیده

Considerable interest has recently focused on the weaver mutation, which causes inward rectifier channel alterations leading to profound impairment of neuronal differentiation and to severe motor dysfunction in mice (Hess, 1996). The principal targets of mutation are cerebellar granule cells, most of which fail to differentiate and degenerate in a premigratory position (Rakic and Sidman, 1973a,b). Two hypotheses have been put forward to explain the pathogenetic role of mutant inward rectifier channels: namely that inward rectifier channel activity is either lacking (Surmeier et al., 1996) or altered (Kofuji et al., 1996; Silverman et al., 1996; Slesinger et al., 1996). We have examined this question by recording inward rectifier currents from cerebellar granule cells in situ at different developmental stages in wild-type and weaver mutant mice. In wild-type mice, the inward rectifier current changed from a G-protein-dependent activation to a constitutive activation as granule cells developed from premigratory to postmigratory stages. In weaver mutant mice, G-protein-dependent inward rectifier currents were absent in premigratory granule cells. A population of putative granule cells in the postmigratory position expressed a constitutive inward rectifier current with properties compatible with mutated GIRK2 channels expressed in heterologous systems. Because granule cells degenerate at the premigratory stage (Smeyne and Goldowitz, 1989), the loss of inward rectifier current and its regulation of membrane potential are likely to play a key role in the pathogenesis of weaver neuronal degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of caspases protects cerebellar granule cells of the weaver mouse from apoptosis and improves behavioral phenotype.

The homozygous mouse mutant weaver exhibits a massive loss of cerebellar granule neurons postnatally. The death of these cells is associated with a single amino acid mutation in the G protein-activated inwardly rectifying potassium channel, Girk2. Evidence suggests that both the mutated Girk2 channel and the calcium channel-associated N-methyl-d-aspartate receptor play important roles in the ap...

متن کامل

Rescue of cerebellar granule cells from death in weaver NR1 double mutants.

The weaver mutation results in the extensive death of midline cerebellar granule cells. The mutation consists of a single base pair substitution of the gene encoding the G-protein-activated inwardly rectifying potassium channel protein, GIRK2. The functional consequences of this mutation are still in dispute. In this study we demonstrate the in vivo and in vitro rescue of weaver granule cells w...

متن کامل

Nigrostriatal dopaminergic neurodegeneration in the weaver mouse is mediated via neuroinflammation and alleviated by minocycline administration.

The murine mutant weaver (gene symbol, wv) mouse, which carries a mutation in the gene encoding the G-protein inwardly rectifying potassium channel Girk2, exhibits a diverse range of defects as a result of postnatal cell death in several different brain neuron subtypes. Loss of dopaminergic nigrostriatal neurons in the weaver, unlike cerebellar granule neuronal loss, is via a noncaspase-mediate...

متن کامل

Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABAB receptors

c-Aminobutyric acid (GABA)B receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K-currents (GIRK). In some neurons, GABAB receptors either cause a tonic GIRK activation or generate a late K dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward rectifier K-curr...

متن کامل

Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.

gamma-Aminobutyric acid (GABA)(B) receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K(+)-currents (GIRK). In some neurons, GABA(B) receptors either cause a tonic GIRK activation or generate a late K(+)-dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 10  شماره 

صفحات  -

تاریخ انتشار 1998